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ABSTRACT

Most Al domain representations have been based on state-oriented world models. In
this paper we present an event-based model that focuses on domain events (both atomic
and nonatomic) and on the causal and temporal relationships among them. Emphasis is
also placed on representing locetions of activity and using them to structure the domain
representation. Our model is based on first-order temporal logic, which has a well-understood
semantics and has been employed extensively in concurrency theory. We show how temporal-
logic constraints on event histories (records of past activity) can facilitate the description of
many of the complex synchronization properties of parallel, multiagent domains.
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1 Introduction

The duality between events and states is a well-known phenomenon. In a state-based repre-
sentation, the world is viewed as a series of states or “snapshots” that are altered by events.
Events are modeled solely in terms of their state-changing function. Alternatively, the dual,
event-based approach represents the world in terms of a set of interrelated events. In this
context, the “state” of the world at any particular point in time is represented in terms of
the set of events that have occurred up to that moment {see Figure 1).

Most Al domain representations have relied on state-based models. In this paper we
explore the dual view and examine its impact on the representation of multiagent domains —
domains in which parallel activity is inherent and vital. As with most dualities, the choice of
one representation over another may not affect any essential capability for expression; after
all, one dual representation can usually be converted into the other. However, the mere form
of a representation may make certain kinds of properties more natural to express and reason
about. We believe that an event-based approach holds this advantage with respect to many
of the complicated properties of multiagent worlds.

The representation described in this paper is based on the GEM concurrency model
[17,18,19,20]. As advocated by philosophers such as Davidson [6] and as manifested in several
Al representations such as Allen’s and Georgeff’s [1,10], GEM reifies events and explicitly
represents their causal and temporal interrelationships. However, unlike previous Al repre-
sentations, events are the primary elements of our world model and state is defined strictly
in terms of past event activity. Thus, the work described in this paper explores the use of
events and event relationships in way that is more general than previous work on knowledge
representation and reascning.

Another important aspect of the GEM representation is an explicit emphasis on location
of activity. Specific mechanisms are provided for structuring events into logical locations of
occurrence as well as for grouping those locations together in various ways. These event
structures help organize the way a domain is described — for instance, particular domain
constraints can be localized within a given context or subset of events. Structural contexts
can also be used to actually represent properties of the domain. For example, particular event
sets can be used to represent locations of forced sequential activity, scopes of potential causal
effect, or the boundaries of localized forms of knowledge. In this way, domain structure helps
to attack aspects of the frame problem. Domain structure can also be utilized as a heuristic
in guiding computation; for example, it can serve as a guideline for the decomposition of

planning tasks.



eventA eventB
J J eventA : state0 -> statel

eventB : statel -> state2

State-based View

stateO = empty history

statel = history with eventA

eventB

state2 = history with
eventA => eventB

fvent-based View

Figure 1: State/Event Duality



Within an event-based model, such as the one we are proposing, a notion of “state” is
most naturally defined in terms of past activity: the state of the world at any point in time is
merely a record of the events that have occurred and their interrelationships {once again, see
Figure 1). State descriptions can be used to characterize sets of states, just as in a state-based
model. These descriptions are typically formulas that describe patterns of past activity — for
example, “the state in which a red robot has registered a request for tool X followed by a
request for tool Y, but has not yet received either tool” or “the state in which Jack and Jill
have just simultaneously begun running down the hill.” These “behavioral” descriptions of
state are formulas that explicitly describe temporal and causal relationships belween events.
In GEM, behavioral state descriptions (as well as all domain constraints) are stated as first-
order temporal-logic formulas. Because these formulas are cast directly in terms of events and
event relationships, a wide range of behavior-related properties can be described succinctly.
Indeed, descriptions of states in which simultaneous activity has occurred are impossible to
formulate in many state-based representations. As we will show, more conventional state
descriptions based on state predicates can also be utilized in our event-based framework (see
Section 6).

The primary aim of this paper is to convey the expressive power behind a world model
based on structured, interrelated events. We begin in Section 2 by motivating our underlying
approach and relating it to other work. Section 3 provides a more formal description of
the GEM world model and presents a semantics for our domain descriptions. The power
behind this representation is then more fully illustrated in Section 4 through construction of
a complex domain description. Finally, Sections 5 and 6 focus on the modeling of nonatomic
events, on building state descriptions, and on the frame problem. In Section 7 we conclude
with a brief discussion of our current work on building a planner based on this event-oriented
framework.

2 Motivation and Background

2.1 A Scenario

One of the primary goals behind any representational mechanism is to capture the properties
of a domain in a useful and ccherent way. Consider the following scenario. Three sets of
friends decide to meet for dinner at an elegant restaurant. Each person must find his or her
own mode of transport to the restaurant (personal car or taxi) and the first person from each
party to arrive must book a reservation for his or her group. The maitre d’ at the restaurant,
Felix, happens to be a somewhat mercenary fellow who gives preference to parties that bribe
him. In fact, everyone knows that a $50 bribe will guarantee eventual seating. However, he
does have some scruples; he will seat a party only if a table of the correct size is available and



if the entire party has arrived (members of a party must be seated simultaneously). All other
things being equal, he will then seat parties on a first-come-first-served basis. After being
seated, guests may then choose, order, and eat their meals.

This scenario, though somewhat complex, is typical of situations we confront in our day-
to-day lives. To describe it requires representation of several interlocking synchronization
constraints (all of Felix’s seating rules) as well as multiple ways of achieving goals (traveling
to the restaurant by car or taxi). It also manifests some naturally emerging forms of structure:
individuals are grouped into parties; certain locations of activity may be viewed as resources
at which only limited forms of activity may occur (the tables at the restaurant, the attention of
Felix); knowledge is partitioned (some of Felix’s actions and habits are known by all, whereas
others may not be). These kinds of properties are found in many domains, including factory
management and scheduling, robotics, and organizational coordination.

When planning for a domain such as this, it is clear that some activities are loosely coupled
and can be planned separately (each person’s plan for getting to the restaurant), while others
must be tightly coordinated (the seating of the three parties). In addition, the expansion of
some nonatomic actions will preserve a sense of locality and maintain constraints that may
have been solved at a higher level of abstraction (for example, each person’s menu selection
plan). In other cases, however, nonatomic-event expansion will result in activity that spans
across locations accessible to others, and may thus require rechecking after expansion (possible
contention for the use of a limited number of taxis).

In Section 4 we shall illustrate our GEM-based representational approach by building a
specification of this scenario. In Section 7 we outline a planner currently under construction
that is based on GEM and that explicitly uses domain structure to guide the planning process.
First, however, we take a brief look at other common forms of domain specification and the
ways in which they might tackle the restaurant problem.

2.2 Other Approaches

Most traditional AI domain representations model the world as a sequence of states, and ac-
tions or events as relations between sets of states [8,23,27].! States descriptions are typically
constructed in terms of a set of state predicates, and actions are defined in terms of precondi-
tions and postconditions on state. This is the basic descriptive framework underlying classical
planning systems such as STRIPS [8], NOAH (28], and other planners [32,33,34]. Some of
these representations require that all events be totally ordered in time [8,23]. In others, events
are ostensibly partially ordered, but it is still assumed that potentially interacting events oc-
cur in some total order that conforms to the partial order [28]. For instance, this premise

1 Although they are often viewed as distinct, we shall use the terms “action” and “event” interchangeably.



underlies use of the STRIPS assumption [8]. While the STRIPS assumption can be used to
determine the effect of individual events on world state, it cannot be used to determine the
combined effect of simultaneous events. Since parallel, multiagent domains may sometimes
even require that events occur at the same time (for example, two robots picking a heavy
block up together), this is a definite limitation.?

Another disadvantage of traditional state-based frameworks is that they spread the rep-
resentation of some kinds of properties across several action descriptions. For example, to
encode the restaurant scenario’s seating rules, several state predicates would have to be main-
tained to encode the “synchronization state” of the reservation desk: who is waiting, in what
order they arrived, who gave the biggest bribe, how large the parties are, what tables are
available, etc. The preconditions and postconditions of reservation and seating-related ac-
tions would involve complex manipulation of and interactions among these predicates. Each
of the seating constraints is essentially spread out among the descriptions of the actions that
are involved. Changes in the constraints may therefore entail fairly complex and nonocbvi-
ous changes in action descriptions. Clearly, it would be simpler if each of Felix’s rules were
encoded as a separate, succinct constraint on the relationship among domain actions.

More recent approaches to domain representation have been based on state tntervals.
Events (actions) and/or predicates are modeled as state sequences occurring over an inter-
val of time, and domain properties are described in terms of interval-ordering constraints
[1,7,13,24,29]. This form of representation has the benefit of allowing the state of the world
during an event to be modeled explicitly and reasoned about. Event intervals can be tempo-
rally related in all possible ways (for example, they can be interleaved or simultaneous). Most
interval-based models also explicitly utilize relationships between events (although sometimes
only relationships between types or classes of events are allowed). However, events themselves
are not considered the primary objects of the world model.

Unfortunately, many of these interval-based approaches do not capture the semantics of
concurrent activity in a clear manner. For example, merely equating an event type with a set
of state intervals (typically, the intervals which represent successful event occurrences) gives
no clue as to how events are achteved or composed ~ e.g., what can or cannot be done by an
agent.? This hampers reasoning about interactions and relationships between events, as well
as about how events may fail. Georgeff’s recent paper elaborates this point [10].

TRecent work by Georgeff [10] has made progress in extending the situation-calculus framework to accommo-
date simultaneous events. A model-based approach is used, along with a semantic (rather than syntactic)
frame rule. However, properties that involve particular relationships between events (such as simultaneity)
must still be described in Georgeff’s framework by using what is easentially event-based description. Thus,
although his model is state based, explicit relationships between events are used.

*However, Allen and Koomen |2] do utilize a simple form of event decomposition aimilar to NOAH operators.



Some interval-based models also do not adequately capture existing or potential rela-
tionships between event instances. It is useful to be able to reason about specific causal
event-pairs, or the particular events composing a nonatomic event, not just causal and com-
posite relationships between classes of events. For example, in the restaurant scenario, it
is important to know precisely which reservation events correspond to which seating events.
Otherwise, Felix’s seating rules could not be enforced. In addition, most interval-based rep-
resentations employ a notion of causality that implies eventuality — i.e., if a class of events
A has a causal relationship with a class of events B, then, if an event of type A occurs, an
event of type B must too. It is therefore difficult to talk about situations in which an event
has occurred but has not yet caused (and perhaps never will cause) its corresponding effect.
For example, one might view a party’s entering a restaurant and making a reservation as
causing the party to be subsequently seated. However, such a seating need not necessarily
materialize.?

Finally, none of these domain representations utilize event location (i.e. structural rela-
tionships between events) in any complex way.> These kinds of relationships are important if
we want to capture those aspects of a domain that are truly affected by locality — for example,
forced sequentiality within certain regions, or boundaries of causal effect.

As we shall illustrate, an ontology based on structured, interrelated events has a distinctly
different flavor from the interval-based approaches, although it shares with them many of the
advantages over more traditional representations. Information about event relationships is
captured explicitly. We can easily talk about particular event instances and their various
temporal, causal, and simultaneity interrelationships, as well as how particular events con-
stitute a specific nonatomic event. Event intervals and interval relationships can also be
utilized. Complex structural relationships among events (i.e. various kind of event loca-
tions and groupings of locations) are also represented. The temporal logic underlying our
model has a well-understood semantics and has been used extensively in concurrency theory
[26,20]. Our use of temporal-logic constraints over history sequences (sequences of accumu-
lating records of past behavior) is distinet from most previous approaches (although Stuart
uses a similar idea [31]). Because histories include all information about previous events and
their interrelationhips, they facilitate use of complex information about the past.

*While it is nonstandard, we have found it advantageous to view causality as a phenomenon more akin to
enablement. To say that class A causes clags B means that any event of type B must have been “enabled
by® an event of type A. However, an occurrence of an event of type A does not guarantee that it will cause
an event of type B. If, however, such a relationship does exist, it is perfectly reasonable to say that it is
causal, If an eventuality requirement is also desired, it must be atated explicitly.

$0Of course, many models do associate events with their performing agent. Nonetheless, this is a very limited
form of event structure.



dots = events
circles = elements
polygons = groups

A

Figure 2: Events, Elements, and Groups

2.3 GEM: An Informal View

Because our approach is somewhat unconventional, it is useful to begin with an informal
description of the GEM world model. This discussion’ will be formalized later.

Our event-oriented representation is based on the view that the world can be modeled as
a myriad of interrelated events occurring at locations (see Figure 2). The most basic events
are atomic; they are not observably decomposable. Nonatomic events are then composed
of these atomic events. Three partial relations may hold between events: a causal relation
~s, a temporal order =, and a relation that embodies required simultaneity =. Structural
relationships are also used to describe event locations as well as nonatomic event composition.

A useful way of understanding our world model is as a two-tiered structure. The upper tier
is based on partially ordered sets of events related by ~+, ==, and + as well as by structural
relationships. We call a particular set of interrelated events a world plan. (Figure 2 might be
viewed as a pictorial representation of a particular world plan.) The lower tier of our world
model] consists of the set of executions admitted by a world plan. It is this lower tier that
is usually identified as the “world model” in most state-based representations. Because each



world plan may allow many possibly executions, branching state models are conventionally
used to represent this execution-level view of the world. However, we have found it easier to
reason about the world primarily in terms of world plans (the upper tier). These structures
are definitely a more compact representation than branching state models — in fact, they
correspond directly to the usual notion of a “plan.”

A world plan also more clearly represents what is actually “knowable” about a domain —
i.e., it models the observable and necessary qualities of a domain. For example, if => (el, €2)
is true of a world plan, ¢l must occur before €2 in every domain execution. However, if two
events are observably unrelated temporally (they are unrelated by —> in the world plan),
in some world executions they may occur in a particular order, while in others they may be
simultaneous. (In fact, any two events that are unrelated by = are potentially simultaneous.)
In contrast, if = (el, e2) is true of a world plan, el and €2 must occur simultaneously in every
world execution. The distinction between known relations and the executions admitted by
them is especially useful when dealing with parallel domains. For example, people can usually
perceive the known temporal order of specific world processes (and thereby can reason easily
about them), but find it difficult to know exactly how these processes are interleaved (the
actual world executions). World plans are thus a much more intuitive way of viewing the
world than are world executions.

Because GEM’s causal relation is nonstandard in some ways, it merits some additional
clarification. As mentioned earlier, our causal relation ~» is weaker than in other representa-
tions (for example, McDermott’s [24]) in that it decouples causality from eventuality. A class
of events (say Reservations) may hold a causal relationship to another class of events (Seating
events), but the mere occurrence of an event of the first class does not necessarily entail that
it will inevitably cause an event of second type. Once an event does cause another event,
however, this relationship is represented explicitly. Of course, if an eventuality requirement
is also desired, it can be specified by using a temporal logic constraint (i.e., we could say,
“Every reservation must eventually cause a seating”).

Our causal relation also implies an ordering in time (if el causes e2, it must also occur
before €2). Therefore, we distinguish between causality and {dentification of events (for exam-
ple, the identification of a light-switch-flipping event with the event of turning on the light).
However, our use of the simultaneity relation = enables modeling of event identification and
other forms of required simultaneous activity. As in most representations using causality,
GEM’s causal relation is irreducible and must be induced from outside the logic.

As mentioned earlier, events in a world plan are also clustered into locations. The most
basic type of location is a locus of forced sequential activity; that is, all events belonging
to such a location must be totally ordered within the temporal order =—>. We call these
sequential locations elements and they are depicted in Figure 2 as circles.



Elements (and the events composing them) may also be grouped into larger regions of
activity. We call these locations groups, depicted in Figure 2 as polygonal areas. When forms
of activity logically occur at the same “location,” but are not necessarily sequential, it is
natural to model the location as a group consisting of many elements. For example, one
might model a robot arm as a group consisting of many sequential elements. As illustrated
in Figure 2, groups can be composed hierarchically or overlap.

Group structure is used by GEM to impose constraints on the causal relationships among
events. In essence, the group boundaries may be considered just that — boundaries of causal
access. Thus, groups A and € in Figure 2 might each be used to represent locations of activity
within a robot (perhaps different segments of an arm) that can be causally related only
through activity in group B (a joint). In contrast, the activity at element 7 is accessible to
all locations (can be caused by activity at all locations — i.e., it is global). The activity at
element B is not only accessible to activity within groups 4, B, and C, but, because it is part of
groups A, B, and C, it can affect or cause activity at all locations (it could perhaps represent
the robot’s brain). A group may also be associated with ports or access holes that serve as
causal interfaces between the group and the events outside it.

The “state” of the world at any particular moment is modeled in GEM as the sum of past
activity that has occurred. States embody not only what is true at particular moments, but
also what has occurred in the past; we therefore call them histories or pasts. This view of
state as an event history actually conforms quite naturally to what humans know about the
world. If we allow events that model observations, then what can possibly be known at any
particular moment (i.e. the known state of the world) will be derivable from the events that
have occurred (i.e., past observations and actions). If we further categorize past activity into
those sets of events occurring at, or observable from, particular sets of locations — say, those
associated with the particular group modeling a robot — we can then model the “beliefs” of
that robot as its localized view of past activity.

GEM’s entire representational capability is built upon the basic framework we have just
described. A GEM specification describes a particular domain by delineating the kinds of
events and event structures found in the domain and then imposing constraints on the set
of possible world plans (and therefore on the set of possible world executions). In the GEM
specification language, constraints on actions and their interrelationships are formulated in
first-order temporal logic over sequences of histories (world executions). These constraints
may be scoped or applied within locations of activity. All of these capabilities are formalized
and illustrated in the next two sections.



3 Domain Model

As stated in the preceding section, the GEM model may be viewed as two-tiered: the upper
tier models the world in terms of world plans (sets of interrelated events, elements, and
groups); the lower tier models the actual physical executions allowed by world plans. Each
world plan is composed of a set of unique objects, called events, that are related by a temporal
ordering =, a causal relation ~», and a simultaneity relation =. Events are also grouped
into elements which may further belong to groups (groups may also belong to surrounding

groups).

W =< E,EL,G,—> ,~ ,=— g >

o E = A set of event objects

e EL = A set of element objects

e G = A set of group objects

e =>: (F x F) The temporal ordering

~+: (E x E) The causal relation

=:(F x E) The simultaneity relation

e:(Ex(ELUG))U((ELUG) x G) A subset relation between events
and elements or groups in which they are contained, as well as between

elements and groups and the surrounding groups in which they are con-
tained.

For now we assume that all events are atomic. Thus, each event in a world plan models
an atomic event that has occurred in the world domain, each relation or ordering relationship
models an actual relationship between domain events, and each element or group models a
logical location of activity. In Section 5 we shall extend this basic model to accommodate
nonatomic events, Note that our assumption of event atomicity does not imply that events
are totally ordered; they may happen simultaneously. From an intuitive standpoint, it might
be useful for the reader to view each atomic event as the endpoint of some logical world action.

Every event in a world plan must be distinct; it may be viewed as a unique token. Events
may be parameterized and may also be organized into types, each of which represents some
class of world events. For example, Paint{Object, Color) could represent the class of world
events, each of which paints an object a certain color. A specific instance of this type would
be paintfladder,red). Lowercase tokens are used to denote specific event instances, while
uppercase is used for event classes or types. A similar convention is used for parameter values
and types, as well as for group and element instances and types.

10



As described earlier, events are related by three kinds of partial relationships, =, ~»,
and =. The temporal order = is an irreflexive, antisymmetric, transitive relationship that
models event ordering in time.® The causal relation ~+ is irreflexive and antisymmetric,
but not transitive — it represents “direct” causality between events. Every domain is, by
default, associated with a constraint that requires causally related events to also be temporally
related (~+(el,e2) > —>(el.e2)), but the reverse is not true; just because two events may
be forced to occur in some sequence does not mean that they are causally related. Finally,
the simultaneity relation = is reflexive, symmetric, and transitive, and models a necessary
simultaneous occurrence of events.

In addition to being ordered, events are also clustered into elements. These elements (as
well as other groups) are further clustered into groups. The events considered part of a group
are precisely those belonging to the group’s constituent elements and groups. The structure
of a domain is conveyed by the set membership relation e,

Particular domains are represented in GEM by domain specifications. Each specification
will allow a set of world plans and the world executions conforming to those world plans. A
specification is built by delineating locations of activity (elements and groups), stating the
types of events that may occur at these locations, and, finally, imposing constraints on the
possible relationships among those events. Some of these constraints are domain-specific (for
example, the constraints that describe the seating rules of the restaurant domain); others
apply to all domains {e.g., the total ordering constraint on events belonging to the same
element). The basic form of a constraint is a first-order temporal-logic formula that is applied
to the possible executions of a given world plan. The next section describes a semantics for
such constraints.

3.1 World Executions: Histories and History Sequences

A world plan, as we have described it, is actually a structure that captures or represents many
potential executions in the domain being modeled. For example, consider the world plan in
Figure 3. It can actually be executed in three ways: '

Execution 1: 1lsta 2nd b 3rde 4th d
Execution 2: 1lsta 2nd ¢ 3rd & 4th d
Execution 3: 1sta 2nd b,c 3rd d

®Note that we make no use of explicit time values. In multiagent domains, it is actually disadvantageous to
rely on such values for purposes of synchronizaton; the use of a partial temporal ordering is 2 much safer
avenue for assesging the relative occurrences of events. However, actual time can be incorporated into GEM
by associating each event with a time parameter and requiring that the temporal ordering conform to these
event time stamps: (¥ e1(t1), e2(¢2)) [t1 < 2 D == (el(t1),e2(t2))].

11



= (a,8) = (a,c) = (b,d) = (c,d)
e(a,ell) e(bell) e(c,el2) e(d,el2)
e(ell,g) e(el2,9)

Figure 3: A World Plan

Note that, in the third execution, & and ¢ occur simultaneously. Although we know that
one of these world executions may occur, we cannot assume any one of them actually does.

The possible executions of a world plan may be viewed as linear sequences of “ states,”
where each state is a record of past activity. We call such a state a history or pest.” Each
history a of a world plan W is simply a set of partially ordered events that is a prefiz of that
world plan; it therefore may be described in the same way as a world plan, i.e., for history
o, we could uge < Eu, ELy,Go,=—>a;, ~ay—a,Ea >, Where E, C E, ELy, C EL, G4 C G,
—>4 is a subrelation of =, etc. Each history represents a possible point in an execution of
the world plan, plus everything that has happened until then. Essentially, it is a record of
past activity up to some moment in time.

For the world plan in Figure 3, there are six possible histories or pasts, consisting of the
following sets of events (as well as their interrelationships):
ap {} o {a} a; {ab} ar:{ac} om:{abec} oan:{abecd}
For instance, state a;, describes the state in which events a and b have occurred, and in which,
moreover, the relations =>,; (a,b), £a;(a, €l1), €a;(b,ell), and e4,(ell, g) all hold.

Given this notion of history (“state”), the possible world executions permitted by a world
plan may be described as sequences of histories — which we shall call valid history sequences
(VHS). For each VHS, every history in the sequence (except the first) must be a superset of

"The reader should be warned that the term hfstory has been used by others in different ways — for example,
for a particular sequence of states. Here the term refers to a snapshot of the past — i.e. a record of the
events that have occurred and their interrelationships.

12



its predecessor. Moreover, two events may enter a given VHS in the same history only if it is
possible for them to have occurred simultaneously, i.e., if there is no explicit temporal ordering
relationship between them. For example, if =>(el,e2), then el and e2 would have to enter a
VHS in distinct histories. By the same token, if two events must take place simultaneously
(e.g., = (el, €2)), they must always enter a given VHS in the same history. A history sequence
is said to be eomplete if it starts with the empty history.

For the world plan in Figure 3, there are three possible complete VHSs — 81, $2, and S3
— corresponding to the three possible executions of the world plan given earlier:

S1: o9 o4 @ om @, = Ista 2ndd 3rdec 4thd
52: oy o o om op = Ista 2ndc 3rdb 4thd
53: o o oam oy = 1stae 2ndbe 3rdd

Note that one way of representing the possible history sequences of a world plan might be as
a branching tree. For example, we would have

S 0 = am — g

Qo — o — O — Om 7 Qp

N Qm — o
This corresponds to the branching tree of states used by McDermott; a chronicle corresponds
to a VHS [24]. However, by representing this tree as a world plan (i.e., the form depicted in
Figure 3), information about possible world executions and observable relationships between
events is conveyed in a more compact form.

3.2 Constraint Semantics

Now that we have valid history sequences, we have a framework for defining the semantics
of formulas in first-order linear temporal logic. First, we consider simple nontemporal first-
order formulas @. Each such formula is composed in the standard fashion, with the usual
quantifiers and connectives (A,V,—,D,<=,¥,3,3!).2 Event, element, and group instances,
as well as event-parameter values, are used as constants, over which range event, element,
group, and event-parameter variables. The predicates that may be used in these formulas are
occurred, the infix predicates ~», =>, =, £, and equality, as well as arithmetic comparison
of parameter values. The interpretation of formulas is standard. Given a history o described
by < Ea, ELy,Ga,—>a, ~a, —a)Ea >, We have

o |= occurred(e) = eckq
afFel=>e2 = =>,(el,e2)
o= el ~s e2 = oy (el,e2)
al=el = e2 = =, (el,e2)
alEzey = eqlz,y)

8The quantifier 3! denotes existence of a unique object.
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A typical nontemporal first-order formula is the following: (V¥ e:E)[occurred(e) > (3 f:F)[f~re]].
This might be read as follows: “Every event of type E that has occurred must have been caused
by an event of type F.” Free variables in a formula are considered, by default, to be universally
quantified.

Linear temporal operators are modal operators that apply formulas to sequences.® The
most common temporal operators used are O (henceforth), O (eventually), O (nezt), and U
(weak until). In most temporal logics they apply formulas to sequences of states [26]. GEM
follows traditional formulations of linear temporal logic, but applies the modal operators
to sequences of histories (i.e., to VHSs). Given a valid history sequence of the form S =
@o, @1, ...., we use the notation S[i] to denote the ** tail sequence of § - i.e., a;, ais1,....
Note that S = S[0]. Also notice that every tail sequence of a VHS is also a VHS.

We then define the semantics of temporal formulas as follows:

(Vi 2 i) S| =P

(320 shEP

Si+1EP

(Vi zd) Sl PV

@2 SUEQA(Vki<k<j)S[k E P]

A nontemporal formula Q is true of S[¢] if it is true of o;: Sl{| E Q=i E Q.

Henceforth P: S[i|=OP
Eventually P: S[i|EOP
Next P St E=QP
PUntilQ: S EPUQ

M womw W

To enhance the specification of properties dealing with past activity, we also introduce

the backwards temporal operators A (before), O (until now), P & (Q back to P), and INIT
(initially). Although somewhat nonstandard, they have been used elsewhere |3].

SlijAP = S[i-1EP
Sli] =0 P (Vk,0 < k <) S[k] = P
silP& = sllEOQV
(35,0< 5 < 9)[Sl5] = PA(VE,§ <k <i) Skl Q]

We define INIT P to be O [((—(3e)oceurred(e)) > P]. In other words, P is true of the empty
history. At the beginning of a VHS, S[0] = AP is false for all P.

Because we shall be creating structured specifications in which constraints are imposed
on limited contexts, it is also useful to define localized or scoped versions of the temporal
operators. For example, what happens nezt in a particular context may be different from
what happens next in the domain as a whole.

®This is in contrast to branching-time temporal logics, which regard time as a branching tree. In these logics,
the modalities can vary according to how they are applied to the various paths through that tree. We have
jound linear temporal logic to be adequate and simpler to use.
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Suppose we have a VHS of form ag....ct,. Let us assume that context is a set of events.
We then define ag....ct;|contezt to be the history sequence remaining after histories that satisfy
the following formula have been removed:

occurred(e) A A—occurred(e) D —e € context.

In other words, we eliminate from «yg....an all histories that are formed solely through the
addition of events ocutside contexzt,

Given any valid history sequeice S, we then define the scoped temporal operators as
follows:

s ‘= Dcantczl P = Slcontc:t '= O P
S != Ocontczt P = S|contez: ‘= <> P
S ‘= Ocontext P = slcontczt != O P

and similarly for other temporal operators.1®

Finally, first-order temporal logic formulas may be applied to a GEM world plan by viewing
a world plan W as the set of all its complete valid history sequences. A world plan satisfies a
constraint if and only if all tail sequences of its complete valid history sequences satisfy that
constraint

W k= P=(V complete VHS S of W)(Vi > 0)S[f] = P .

For example, the world plan in Figure 3 satisfies O (occurred(d) D b => d A c => d), but
not O(occurred(c) O occurred(d)) (VHS S2 does not satisfy it).!!

1°The use of contexts may also be convenient for describing scoped or localized forms of state. For example, a
state of the world & relative to a particular context would be a state &, where all noncontextual events have
been removed. If a particular context corresponds to the events that are part of, or visible to, a particular
agent, then the scoped state with respect to that agent would correspond to the agent’s perspective upen,
or beliefs about, the past.

1The temporal operator O can actually be removed from both of these constrainte, because they apply to
all tails of complete VHSs of a world plan.
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4 Domain Specifications

In the next three sections, we demonstrate how GEM domain specifications are built by
actually constructing a description of the restaurant scenario presented earlier. We begin
with an overview of the general structure of the GEM specification language and describe
how typical kinds of constraints are formed. In Sections 5 and 6 we address such issues as
the specification of nonatomic actions, state description, and the frame problem. A complete
specification of the restaurant scenario is given in the appendix.

4.1 Specification Structure

The GEM specification language is a set of notational conventions for writing constraints on
world plans. Viewed semantically, a specification ¢ is equivalent to (can be expanded into)
a set of first-order temporal-logic formulas over valid history sequences. Each specification
defines a class of world plans by stating explicitly: (1) what types of events may occur; (2) how
those events must be clustered into elements and how elements and groups are clustered into
groups; and (3) what constraints exist on relationships between events and their parameter
values.

Just as elements and groups model the structural aspects of a domain, they also serve as
the structural components of our specification language. Each specification o consists of a set
of element and group declarations, along with a set of explicit constraints on the events that
belong to those elements and groups. Each element is associated with a set of event types,
and each group ie composed of a set of elements and other subgroups. The events belonging
to an element may be only of the designated types associated with it. The events belonging to
a group are taken to be those belonging to the group’s elements and subgroups. Constraints
are “scoped” within the context in which they are declared; i.e., they are imposed only on
those events that belong to the element or group with which they are associated. However,
the temporal operators are scoped with respect to a context only if scoped temporal operators
are used. Thus, if we write (OP, then P must be true of the next state in the entire world
ezecution, not just the next state in which an event in the particular element or group occurs.

GEM also includes a mechanism for describing element and group types. These may
be parameterized and are definable as refinements of other previously defined types. Each
instance of a defined type is a unique element or group with a structure identical to that
of its type description. From a semantic standpoint, the use of types and instances may be
viewed as a simple text substitution facility; each type instance is shorthand for a separate
but identical element or group declaration.
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For example, we might describe the class of restaurant tables as follows:12

RestaurantTable (size:INTEGER) = ELEMENT TYPE
EVENTS

Occupy{p:Party)

Vacate(p:Party)
CONSTRAINTS

END RestaurantTable

A declaration of the form
table[1..5] = RestaurantTable(10) ELEMENT

would declare table[1]...table[5] to be tables of size 10. The notation table[1].size yields ta-
ble[1]’s size value (in this case, 10). table[1].Occupy and table[1].Vacate refer to the class of
Occupy and Vacate events belonging to table[1], respectively. The notation table[1].occupy(p)

denotes a particular Occupy event instance.1®

The structure laid out by a set of group and element declarations creates a framework
associated with implicit (default) constraints. Domain-specific constraints are then added on
top of this framework. Default constraints include the following (we give only an informal
description of these constraints here; for a more formal description, see [19]):

s The only events, elements, and groups allowed within a valid world plan are those
delineated by the specification. We are essentially minimizing the potential structure
of world plans with respect to the domain specification. Events must be clustered into
elements and element/group structures must be formed as described in the specification.

e All events belonging to the same element must be totally ordered temporally:
(V el.e2.elem) [eleelem A e2celem A el#e2 D el = e2 V €2 —> el].
For instance, we might represent the restaurant lobby as follows:

12Thie description models only two types of events that can take place at a table. Of course, if we wish a
table to be associated with broader forms of activity, it could be modeled as an element with more event
types or, alternatively, as a group consisting of many elements. For example, to represent the simultanecous
lifting of both sides of a table, each side of a table could be modeled as an element asaociated with “lifting™
events. We could also model these events as being performed by the agente that do the lifting. We could
even do both (have lifting events at the table and the lifting agents) and identify the two. This form of event
identification is illuatrated in Section 4.4.

13 4 more typical event notation might be occupy(table[1},p). However, we have found dot notation to be very
useful for denoting events that occur at particular elements or groups.
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lobby = ELEMENT
EVENTS

Enter (f:Friend)
END ilobby

While lobby is not associated with any explicit constraint, its events must still be totally
ordered — i.e., people may enter the lobby only one at a time.

* As stated earlier, we use groups as a way of representing limitations of causal effect.
Essentially, the “walls” of a group form a boundary through which causal effect may
probe outward, but not inward.!* The one exception to this rule is the use of ports:
“holes” in the group boundary. If an event is a port for a group g, that event can be
affected by other events outside g. Let us assume that the atomic formula port(e,g) is
true for every event e that is a port of group g. The formal constraints on the causal
relation imposed by group structure may be described as follows.

Suppose that eleell and e2cel2. Then el may cause €2 (el ~ €2) only if:
access(ell,el2) V [port(e2, g} A access(ell, g}].

We define access(z,y) to be true if either (1} z and y belong to the same group or (2)
there is some surrounding group ¢' such that y belongs to ¢' and =z is contained within
g' —i.e., y is “global” to z. We say that an element el or group g belongs to a group ¢’
if it is explicitly declared as one of the components of group g'. We say that el {(or g}
is contained within ¢' if there is some hierarchical scoping of groups gl...gn such that el
belongs to g1, g1 belongs to g2, ... and gn belongs to ¢'. (By convention, we assume that
all elements and groups modeling the world are contained within a single surrounding
group.)

For example, the specification structure for the restaurant domain is shown in Figure 4
(only one party with one friend, one taxi, and one restaurant table are depicted}. Notice
how the friend has access to the taxi, the reservation desk, the restaurant lobby, and
also to the Vacate actions at the table (an asterisk marks port event types). However, a
friend cannot directly affect Felix’s personal observations, nor can she directly occupy
a table (guests must be seated by Felix).

We now define some of the domain-specific constraints for the restaurant domain. Because
many constraint forms arise repeatedly, it is useful to have abbreviations for them. We
shall take some liberties in devising these abbreviations, appealing to the reader’s intuition.
However, all of these constraints are more rigorously defined elsewhere [19].

14This is much like the notion of scope in programming languages, except that groups may overlap as well as
form hierarchies.

18



restaurant_scenario

felixworld

observations

table

Occupy
Vacate

rt
party friend
reservati%ns movement
communication
0
lobby auto

taxi

Figure 4: Restaurant Domain Structure
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4.2 Prerequisite Constraints

Probably the most common kind of constraint is the strong prerequisite, denoted E1 — E2.
This constraint requires that each event of type E2 be caused by exactly one event of type
E1, and that each event of type F1 can cause at most one event of type E2. In essence, this
is a one-to-one causal requirement. The definition of this constraint is as follows:

BFl— B2 =
(Ve2 : E2)(3! el : El)[el ~» e2]] A
(Vel : E1)(3 at most one €2 : E2)[el ~+ €2]

In Section 4.3 we use a strong-prerequisite constraint to describe the one-to-one causal rela-
tionship between reservation and seating events: Reserve — Seat. We can also use it to define
the constraints of the RestaurantTable element type. Constraint 1 uses a regular-expression
notation as shorthand for a more complicated pattern of strong-prerequisite constraints,!®
Each Vacate(p) event must have a one-to-one causal relationship with a preceding Occupy(p)
event, and each Occupy event (except the first) must have a one-to-one causal relation-
ship with a preceding Vacate event. This restricts the events at a table to be of the form
occupy{pl)~+vacate(pl}~roccupy{p2)~+vacate(p2)~s.... Namely, a table is a resource that can

be used by only one party at a time.!®

RestaurantTable (size:INTEGER) = ELEMENT TYPE
EVENTS
Occupy(p:Party)
Vacate(p:Party)
CONSTRAINTS
1} ( Occupy(p) — Vacate(p) }*—
END RestaurantTable

Taxis and cars are other resources that are described in a similar fashion. In the following
we use the element type hierarchy to first describe a Vehicle element type, and then further
define taxis and personal automobiles as Vehicles.

1%(z)» — denotes zero or more repetitions of z separated by —. A formal semantica for prerequisite
expressions is given in my dissertation [19].

16Note that, although a party may “occupy” a table only once before it vacates, this does not preclude
members of a party from leaving the table in the interim. As we shall see later, while some of the seating
actions of party members are identified with “occupying” the table, not all are. Likewise not all departures
from the table are identified with the party’s actually vacating the table.
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Vehicle = ELEMENT TYPE
EVENTS
Occupy
Drive(loc1.loc2:Location)
Vacate
CONSTRAINTS
1) ( Occupy — Drive(locl,loc2) — Vacate
END Vehicle

)i—b

Taxi = Vehicle ELEMENT TYPE
Auto = Vehicle ELEMENT TYPE

Another useful form of prerequisite constraint combines strong prerequisite constraints to
model activity that forks or splits from an event, or joins into an event:

EventFork: E— {El1,..En} = (Vi,1<i<n)E— Ei
EventJoin: {El,..En} — E (Vi,1<i<n)Ei — F

Hl

Another common form of prerequisite relationship between events is the nondeterministic
prerequisite {F1...En} — +E, defined as follows:

{El,..,En} — +E =
(Ve: E)(Tlei : {EL,..., En})[ef ~ €] A
(Vei : {E1,...,En})(3 at most one e : E)[ei ~» ¢

In other words, each event of type E must be caused by exactly one event of type E1 or E2
or... En, and an event of type E1 or... En can cause at most one event of type E. This
is useful for specifying situations in which exactly one (undetermined) member of a set of
possible event types can cause another event.

Another form of nondeterministic behavior is the nondeterministic fork:

E — +{El,...,En} =
(Vei : {E1,...,En}}(Ie: E)[e ~ ef]A
(Ve : E)(3 at most oneei : {E1,...En})[e ~ ei]

In other words, all events of type E1 or ... En must be caused by an event of type E, but
each event of type E can cause only one such event.!”

171t is interesting to note that that both the nondeterministic prerequisite and the nondeterministc fork can he
deecribed using the strong prerequisite if we combine an event class set into 2 single event clases. For example,
ifwelet F= E1U...U En, then {El,..En} — +E=F — E and E — +{E1,..En}=E— F.
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4.3 Priority, Mutual Exclusion, Eventuality

To specify Felix’s seating rules, we need a way of describing synchronization properties among
events. This is easily accomplished with temporal formulas. First we define the abbreviation
el cbefore E2 (el is causally before the class of events E2) as follows:

el chbefore B2 = occurred(el) A ~(Je2 : E2)[el ~» 2]

This may be read, “el has occurred but has not yet caused an event of type E2.”
We can now express priority and mutual-exclusion properties by using the following kinds
of constraints:
» Priority of causal transitions from el to events of type E2 over those from €3 to events
of type E4:

(el chefore E2 A e3 cbefore B4) D O [(3ed : E4)e3 ~ ed D (Je2 : E2)el ~» €2

In other words, if €l is pending at E2 and €3 is pending at E'4 at the same time, then,
from that moment on, if €3 actually does cause an event e4, el must have already caused
an event €2 (el must cause its corresponding event before €3 does).

o Mutual exclusion between intervals in which el and e3 are causally pending:

—{el cbefore E2 A €3 cbefore E4)

If we define tbefore as follows:
el thefore B2 = occurred(el) A —(3e2 : E2)[el => e2]

then temporal forms of mutual exclusion and priority can be expressed as well — e.g., con-

straints of the form
—(el thefore E2 A e3 thefore E4).

Going back to the restaurant scenario, we have the following description of Felix’s reser-

vation desk:
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reservations = ELEMENT
EVENTS
Reserve(p:Party, b:Bribe)
Seat(p:Party, t:RestaurantTable)
CONSTRAINTS
1) To be seated, a party must have a reservation. Moreover, each reservation is
good for only one seating.
Reserve(p,b) — Seat(p.t)

2) Parties can be seated onljr at tables of the right size.
occur(seat) O seat.p.size = seat.t.size

3) A bigger bribe will get you seated faster.
reservel cbefore Seat A reserve? cbefore Seat A reservel.b > reserve2 b >
D {(3 seat2:Seat) reserve2~sseat2 > (3 seatl:Seat) reservel~sseatl ]

4) All other things being equal, seating is first-come-first-served.
reservel(pl.bl)==>reserve2(p2.b2) A b1=b2 A
present(pl) A present(p2) D
O [(3 seat2:Seat) reserve2~sseat2 > (3 seatl:Seat) reservel~sseatl |

5) A $50 bribe will definitely get you seated.
reserve.b > $50 O & (3 seat:Seat) reserve~sseat
END reservations

Note how the temporal operator > (eventually) is used to describe the rule for eventual
seating, given a $50 bribe. The state description present(p) represents states in which all
members of party p are present in the lobby. It is defined to be true precisely at the time
all the friends in party p have arrived in the restaurant lobby but have not yet been seated.
The definition given below thus illustrates the use of event-based formulas to define state
predicates (see Section 6).

present(p) = (V f:Friend. fep) (3 enter(f):Lobby.Enter)
enter(f) cbefore Reservations.Seat

4.4 Simultaneity

One way of establishing relationships between the private events of restaurant guests and
those of the restaurant’s logical components is to form identifications between them. For
example, we can identify a reservation event performed by one of the friends in a party with
the reservation event at the restaurant desk. Similarly, we require that Felix’s seating of a
party coincides with a sitting action by each member of the party. These identifications will
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force all restaurant guests to comply with Felix’s seating rules. Event identification (as well
as other forms of required simultaneity) is accomplished by using the simultaneity relation
=, In particular, we use the following kinds of constraints:

El~E2 = (Vel: E1)(3e2: E2)[el = e2]
Bl E2 = (Vel: E1)(3e2: E2)[el = e2] A (Ve2 : E2)(3el : E1)[el = €2]

Note that F1 = E2 is equivalent to E1 ~ E2 A E2 ~ E1. The constraint F1 ~ E2 identifies
all events of type E1 with events of type E2, but not vice versa. For example, all of Felix’s
Seat events must be identified with Sit actions by members of a party, but not all Sit actions
by a particular person need be identified with seating by Felix.

We begin with a preliminary description of a friend. Each friend is made up of movement
events, communication events, and use of a personal automobile. Note that events at each of
the elements composing a friend must be sequential, but events occurring at different elements
may be simultaneous (as long as they conform to the domain constraints). Thus, people can
potentially communicate and move at the same time.

Friend = GROUP TYPE (m:Movement, c:Communication, a:Auto)

Movement = ELEMENT TYPE

EVENTS
Ride(loc1.loc2:Location)
Walk(locl,loc2:Location)
Sit(tableloc:Location)
Eat

END Movement

Communication = ELEMENT TYPE
EVENTS
Reserve(p:Party, b:Bribe)
OrderFood(food:Food)
END Communication

A party consists of a set of friends, the reservation desk, and the lobby: '8

28The notation f.c.Reserve denotes events of type Reserve occurring at the Communication element c of Friend
1. SELF is used to denote the group constant associated with each particular group instance. Thus, when
the Party type definition is instantiated, SELF will be replaced by each Partly instance’s group constant. The
function setsize ylelds the cardinality of a set.
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Party (size:INTEGER) = GROUP TYPE ({f}:SET OF Friend.reservations,lobby)
CONSTRAINTS
1) size must be the size of the set of friends.

size = setsize({f})

2) A reservation by a friend is identified with a reservation at the desk.
f.c.Reserve(p,b) = reservations.Reserve(p,b)

3) All members of a party must be seated simultaneously.
(V £ € {f}) reservations.Seat(SELF.t) ~ f.m.Sit(t)

4) In order to be seated, all members of the party must be present.
(Vv f" ¢ {f}) lobby.Enter(f’) —reservations.Seat(SELF,Table)

5) The first friend to enter the lobby must make a reservation.
(v f1.£2 € {f}) occurred(lobby.enter1(f1)) A
—(3 lobby.enter2(f2)) [lobby.enter2(f2)=—=>lobby.enter1(f1) ] >
& (3 reservel:fl.c.Reserve(SELF.b)) occurred(reservel)
END Party

We can also now specify Felix’s world, consisting of the reservation desk, the lobby, a set

of tables table[1]...table[10] (these are assumed to have been instantiated), as well as Felix’s
personal observations or thoughts. One sort of observation that Felix may make is whether
a table is empty. Later on we shall add an extra constraint that allows Felix to make such
observations only if the table is indeed empty. For now, however, we assume that Felix always
makes accurate observations. He will not seat a party unless ke thinks a table is unoccupied.
Note that this is different from saying that a seating may take place when the table is free.!®

observations = ELEMENT
EVENTS

EmptyTable(t)
END observations

felixworld = GROUP (reservations, tablef[1..10]. lobby, observations)
PORTS(table]i].Vacate)
CONSTRAINTS
1) Felix must observe that a table is empty before he can seat a party there.
observations.EmptyTable(table[i]) — reservations.Seat(Party.tablefi])

2) Seating a party at a table is the same as occupying the table.

reservations.Seat(p,table|i]) ~ table[i].Occupy(p)
END felixworld

19We could have chosen to do this as well; we just wanted to illustrate the use of “observation” events.
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5 Nonatomic Events and Hierarchical Description

We now digress from our development of the restaurant domain specification to discuss the
use of nonatomic events within the GEM framework. The inclusion of such events is relatively
straightforward once it is realized that a nonatomic event can be described by using two or
more internal events. In particular, we associate each nonatomic event type E with two
atomic event types E' and E", representing the initiation and termination of E. We also add
an additional constraint: E' — E" (there must be a one-to-one causal relationship between
the initial event and terminal event for each nonatomic event). A nonatomic event e is in
progress if the formula e’ cbefore E” is true. Using this notation, we can describe the various
possible ordering relationships between two nonatomic events a and b as follows (these are

the same interval relationships used by Allen [1]):2°
a before b = a"= b’
aequal b = a=b Aa"=b"

n

occursnext(a”) D O occursnext(b’)
aa=>b Aa" ="

a meets b

a overlaps b

a during b = b=a Aa"=0b"
a starts b = a=baa =b>b"
afinishesb = b = a Ab" = a"

The use of initial and terminal events will be the basis for our addition of nonatomic
events to the GEM domain model. We extend world plans to include nonatomic events, and
also add a relation «, which models the composition of a nonatomic event — i.e., if k(e, f),
then e is a part of nonatomic event f. Thus, we now have world plans of the form

W =< E,EL,G,—> ,~,= ,g,F,k>.

where F is a set of nonatomic events, and « : ({£ U F) x F) is the part-of relation between
atomic (or nonatomic) events and nonatomic events. We require that, in all world plans, there
should exist for each nonatomic event f two atomic events f' and f" (its initial and terminal
events) such that x(f', f) and «(f", f). We also have the following additional constraints:

occurred(f) D f'~ f"
e~ f Deras ff
e=f D>De=f

fr~reD flrae

20The abbreviation occursnext{e) is defined by — occurred(e) A O occurred(e).
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f=>eD fll=e¢
e=f DeeFAfl=eAf=¢"
feel > fleel A ficel

feg O flegA feg

Note that a nonatomic event can be simultaneous only with another nonatomic event. We
consider them to be simultaneous if their endpoints are simultaneous. This is equivalent to
Allen’s relation equal (see [1]).

To model a nonatomic domain action, we can now simply use two atomic events — its
initial and terminal events. Usually, however, it is preferable to associate nonatomic actions
with a particular form of behavior. For example, we might want to associate a nonatomic
event type with particular intervals over which some formula holds.

Suppose we have a formula P that is true of particular histories.?! By using the following
constraint, we can identify a nonatomic event type F with every convex interval in which P
is true:

PAA-PD
(3 £:F") justoccurred(f’) A P U (= P A (3 f":F"} [lastoccurred(f") A f'~sf"])

where
justoccurred(f') = occurred(f') A A — oceurred(f’)
lastoccurred(f"} = A justoccurred(f”)

Namely, in any history in which P becomes true, there occurs some event f' and, when P is
about to become false again, f" occurs.

Alternatively, we can choose to model nonatomic actions as particular patterns of behavior.
This is actually much more appealing in an event-based framework. To describe how a
nonatomic event is achieved, we use an abbreviation of the following form:

F = E1 —... event pattern ... —En

This states that the nonatomic event type F is composed of a pattern of other event types,
beginning with an atomic initial-event type (here E1) and ending with an atomic terminal
event type (En). These initial and terminal event types are then identified (by using ~) with
F' and F" respectively. If more than one way of achieving F is supplied, events f' and f* for
each nonatomic event f may be identified with any of the possible initial-event/terminal-event

21Tn other words, P is a stale descripiion.
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pairs of event patterns that could compose f. Finally, we require that for all events et of type
El ... En that compose an event f, x(ef, f) must hold. Any arbitrary event pattern or set
of constraints may be used to describe the set of events composing a nonatomic event. Such
nonatomic events are therefore very similar to the notion of process used by Georgeff and me
[11].

We now return to the restaurant scenario. We can use a nonatomic-event description
to define the different methods the friends have for traveling to the restaurant. Earlier we
associated each friend with a Movement element containing an event type Ride(locl.loc2). We
can now view Ride as a nonatomic event that can be expanded in two ways:

Ride(locl,loc2} = auto.Occupy — auto.Drive(loclloc2) — auto.Vacate

Ride(locl,loc2) = taxi.Occupy — taxi.Drive(locl,loc2) — taxi.Vacate

The element variables auto and taxi must be bound to the friend’s personal automebile or to
any taxi, respectively.

Note that, once Ride events have been expanded, they may cause interference with other
events in the domain that were not observable beforehand. For example, if there is only one
taxi in town and no friend wishes to use his or her personal auto, the Ride events for all
friends will, after expansion, be forced into a total ordering.

Unfortunately, it seems inevitable that the expansion of arbitrarily defined nonatomic
events will result in added complications (or even a violation of domain constraints) at the
resulting lower level of description. It is precisely for these reasons that hierarchical planners
such as NOAH must reckeck domain constraints after each event expansion. This is clearly an
undesirable state of affairs. It can lead to a combinatorial explosion in the cost of reasoning
about and planning in such domains.

One way of getting around this problem is to limit the forms of behavior that can constitute
a nonatomic event. This limited form of behavior must lack interaction with other events in
the domain; it must somehow be encapsulated. Group structure, with its associated causal
limitations, is a candidate for achieving this needed encapsulation.

Consider a nonatomic event type F occurring at element elem. Rather than assume that
initial- and terminal-event types F' and F" also belong to elern (as is normally done), we
create a group g with port event types F' and F" (see Figure 5). Port events of the form
f' and f" serve as an interface between the rest of the domain and the protected forms of
activity within group ¢ (which compose events of type F). We use the abbreviation

F =¢g E1 — ... —En
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el

elem

e2

Figure 5: Protected Nonatomic-Event Expansion

for this kind of protected or limited event expansion. All events composing an event of type
F must belong to group g.

We can use protected event expansion to describe the nonatomic event type OrderFood(food)
in the Friend specification. To each Friend group we add a new subgroup of type FoodOrdering.

FoodOrdering = GROUP TYPE (r:Sight. t:Thought, s:Speech)

Each Sight element is assumed to have an event type Read(menu), Thought has an event
type Choose(food), while Speech has an event type Utter(food). We then add to the Friend
specification the following constraint (fo denotes the FoodOrdering group belonging to the
particular Friend):

OrderFood(food) = fo
fo.Sight.Read(menu) —fo.Thought.Choose(food) — fo.Speech.Utter(food)

Each FoodOrdering group has no ports other than those of type OrderFood™ and OrderFood”.
Thus, if no constraints refer to events in the FoodOrdering group other than those constraints
explicitly associated with FoodOrdering, and if these constraints are also localized (i.e. they
utilize scoped modal operators), then interactions between a friend’s food ordering activity
and other domain events cannot take place.
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6 State Description

As we have been trying to illustrate throughout this paper, many domain properties can easily
be described without the use of state predicates and, in some cases, more naturally. However,
such predicates are often useful for encoding or abbreviating aspects of past behavior. Thus,
we might want to write a constraint of the form “P is a precondition of event e,” without also
stating in that constraint how P was achieved. For example, given some sort of definition for
P, we could use the Precondition constraint defined below:2?

Precondition(e.P) = occursnext(e) > P,

where
occursnext(e) = - occurred(e) A O occurred(e)

The approach we will take to atomic state formulas once again emphasizes the duality
between state-based and event-based representations; just as many state-based descriptions
represent events as relations between states, so shall we represent state predicates dually as
formulas pertaining to events. The truth or falsity of an atomic state formula will thus depend
on the definition of its predicate.

In some cases, these defining formulas will form a complete description of the state pred-
icate. For example, we might define a predicate TableEmpty as follows:

TableEmpty(table) =
— (3 occupy:table.Occupy) occurred(occupy) v
(3 vacate:table.Vacate) vacate cbefore table.Occupy

If, for some history and table, there has never been a table.Occupy event or there is a ta-
ble.Vacate event that has not yet been followed by a corresponding Occupy event (i.e, the
table has been vacated but not yet reoccupied), then TableEmpty(table) is true in that his-
tory. If this formula evaluates to false, TableEmpty(table) is also false.

We shall call such formulas complete predicate definitions. Given the TableEmpty defini-
tion, we have the following constraint on Felix’s observations:

(V empty(t):observations.EmptyTable) Precondition(empty (t), TableEmpty(t)).

Notice that no frame problem arises when complete predicate definitions are used; the
atomic formula TableEmpty(table) is defined to be true for a particular table if and only if its

22T, gay that P is a precondition of all events of type E, we would write: (¥ e:E) Precondition(e.P).
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corresponding formula is true. Consequently, there can be no question about the effects of
unrelated events on its truth value; once true (or false), TableEmpty(table) remains true (or
false) for a particular value of table until its defining formula becomes false (or true).

Sometimes, however, we shall want to use weaker, incomplete predicate definitions - e.g.,
assertions of the form formulal > P and formula2 > - P. In this case, we know that, if
formulal is true, so is P. However, if formulal is false, we cannot conclude — P. This would
be the case, however, if formula2 were true.?® Other types of incomplete predicate definitions
might include use of the temporal operators. These describe ways of attaining P for particular
histories. For example, we might have formulal > O P or INIT P.

We may also want to build predicate definitions not only with behavioral (i.e., event-
based) formulas, but also with formulas that utilize other state predicates. For example, we
might have

- PvQvformulal D R
formula2 = P
R v formula3 2 Q ,

where formulal, formula2. and formula3 are purely event-based. To find valuations for P. Q,
and R in a particular history, we could use an iterative-evaluation mechanism. Behavioral
portions of formulas would be evaluated first and then the formulas would be iteratively
simplified wherever possible. Of course, sometimes this will not yield a truth value for all
atomic formulas. For example, if formula2 and formula3 are true and formulal is false, then
we have R A P A Q. However, if formulal and formula3 are false and formula2 is true, we can
conclude P but nothing more about R and Q (except that R <= Q).

In order to apply incompletely-defined predicates to all histories in an execution, it is
necessary to have some sort of frame rule to assert the persistence of P (or —P) despite
the occurrence of other events. Such a rule is defined in Section 6.2, which essentially min-
imizes the effect of events on state formulas. In the future we hope to explore the use of
circumscription in the GEM framework [22].

Note that, unlike formalisms based on STRIPS-like action descriptions, the use of predicate
definitions (both complete and incomplete) suffers from none of the problems created by
the possibility of simultaneous action. Since effects upon a world state are not prescribed
in the context of individual event descriptions (as is normally done in many state-based
frameworks), there is no confusion regarding the effect of simultaneous activity or any other
form of behavior. If the formula defining the truth-value of an atomic formula P is true of a
history, P itself is true of the history.

2B0f course, for these definitions of P and =P to be consistent, —{formulal A Jormula2) muet hold.
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For example, suppose we have a domain with two events el and €2, plus the requirement
that, if €1 and el occur simultaneously, @ will be true. Otherwise P will be true. In GEM
we would simply state that el = e2 > Q and - el == €2 > P. These effects on P and Q
cannot be expressed in the classical STRIPS framework nor in in any framework that does
not accornmodate event simultaneity and explicit relationships between events.

8.1 Add/Delete Axioms

The add/delete lists used in STRIPS-like frameworks to define the effects of events on state
can easily be cast in terms of predicate definitions. Let v, w, z, 5, and Z denote tuples of
free variables and/or constants. Event type E(E) denotes the class of events of type F whose
parameters match z; and P(:‘?) matches those atomic formulas formed from predicate symbol
P and a tuple of variables or constants matching Z.

Given this notation, for every event type E(z) that adds R(Y) under precondition P(z),
we use a declaration of the form Adder(E(z), P(Z), R(y)) and, for every event type F(w) that
deletes R(Y) under precondition Q(v), we have Deleter(F(w) Q(v), R(y)) If these Adder
and Deleter declarations characterize the effects on R(y) completely, we can use the following
predicate definition for R(y) 4

R(;) =
(3 e:E(%)) [ Adder(E(Z), P(2), R(¥)) Afccurr&d(e) A O precondition(e.P(2)) A
- (3 f:F(w)) [ Deleter(F(w),Q(v), R(¥)) A O precondition(f,Q(¥)) A e==f] |

This states that R(g) is true if and only if it has been made true and has not been
subsequently deleted. Of course, we might want to create other rules using Adder and Deleter
(for example, stating that something is true unless deleted), or use Adder and Deleter to build
incomplete rather than complete definitions. For example, if we stated that the above formula
only tmplies R(g), it would be equivalent to the STRIPS rule (i.e. the value of R(G) would
become undefined after a Deleter event occurs). Notice that we have also assumed that all
relevant Deleter and Adder events have been explicitly stated. Thus, we have invoked a
form of closed-world assumption. Another alternative might have been to use some form of
circumscription over Adder and Deleter specifications.?® While we tend to assume some form

34Note that this formula can be expanded inte a first-order formula by taking a disjunction over all possible
combinations of Adders and Deleters.

320ur use of the closed-world assumption here has been made only with respect to the use of Adders and
Deleters for defining state predicates. It need not necessarily apply to the definition of state predicates in
general. For instance, the frame rule given in the next section assumes that some way of determining which
events affect which predicates is given, but deces not state exactly how. Nor does the rule determine the
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of minimization of the effects of events in this paper, we do not wish to take a particular
stand on how it is done. We intend to explore this further in future work.

6.2 The Frame Problem

In many ways, several of the difficulties often associated with the frame problem find relief in
our structured event-based model. GEM’s ability to structure events into elements and groups
automatically imposes constraints that limit their effects upon each other. For example, events
occurring within nonintersecting groups cannot causally affect one another except through
explicitly-defined ports. Likewise, events occurring within the same element cannot occur
simultaneously, thereby limiting the amount of reasoning necessary to determine the effects
of simultaneity. Another important aspect of group/element structure is that it provides a
well-defined framework in which nonmonotonic reasoning can take place. For example, while
we may discover new qualifications on previously known preconditions for starting a car (e.g.,
that there be no potato in the tailpipe), groups provide a structure in which to add and use
these qualifications. For example, if we model the car as a group, we could add new ports to
that group which allow for the newly discovered kinds of effects.

While we may effectively use group/element structure to alleviate aspects of the frame
problem, there is still a need for frame rules in GEM. In particular, we still need a way to
complete incompletely-defined predicates. As we have so far described, the truth or falsity
of a state-based formula with respect to a particular history must be derived from predicate
definitions. Given that we want to build a computational system based on our model, it will
be inefficient to reevaluate these definitions for every history. This problem is somewhat alle-
viated by the fact that event-based domain descriptions do not often employ state predicates.
Still, some sort of frame rule for carrying over atomic-formula valuations from one history
to the next seems to be necessary, The same rule can also be used for extending incomplete
predicate definitions to form complete predicate definitions.

We now describe a semantic frame rule of the form used by Georgeff [10]. Such semantic
rules avoid the difficulties usually associated with syntactic approaches to the frame problem.
For each n-ary predicate symbol P and event e in a world plan, we add a formula ép (e,ﬂzd) to
the world plan, where Z is an n-tuple of free variables. This states that, for every z,if § p(e, E)
holds, then P(Z) may be affected by e. (Note the similarity between & and the Adder /Deleter
classifications used in the previous section.?®) We then have the following frame rule:

AP(Z) A—(3e)[justoccurred(e) A 6p(e, T)] D P(z).

value of an atomic formula if it is affected by an event in some unknown way.

26 And, as stated in the previous section, while we may wish to minimize &, we take no stand in this paper on
exactly how this is to be done. ’
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In other words, if P(z) is true in a given history and no event occurs that can affect P(z),
then P(Z) remains true.

While the formula ép (e,;) may certainly be different for every P, e, and T, a useful way
of defining § formulas in general is to assume that the predicate definitions in a particular
specification are complete. In other words, we could assume that only events of types explicitly
designated as affecting P(Z) can affect P(z). Suppose we define eventset(P (%)) to be precisely
the set of events so designated. We then assert: 8p (e, ) <= e ¢ eventset(P(z)). The frame
rule then reduces to: AP(Z) A (3 e € eventset(P(z)))justoccurred(e) D P(z) .

7 Conclusion

This paper has presented a structured, event-based framework for representing the properties
of domains with parallel activity. We have attempted to demonstrate its utility in describing
the complex properties of such domains in a coherent and semantically sound fashion. Our
model, designed explicitly for describing parallel domains, has a well understood semantics
(the semantics of first-order temporal logic) that has been used elsewhere in concurrency
theory. By the use of first-order temporal-logic constraints on history segquences, complex
synchronization properties based on causality, temporal ordering, and simultaneity can be
expressed easily and naturally.

An important aspect of our model is its explicit representation of event location. This
is used to embody the structural aspects of a domain, to localize domain constraints, and
to impose constraints on the temporal ordering as well as on causal access. The model also
includes the notion of nonatomic events. State-based specifications can be incorporated by
describing state in terms of past behavior. We have presented a semantic frame rule for such
uses of state. However, we have also stressed the fact that many properties can be expressed
without resorting to state-based description.

We are currently constructing a planning system (GEMPLAN) based on the formalism
described in this paper. It is being written in Prolog on a Sun 3/50. The present system is
capable of generating multiagent solutions to blocks world problems [16]. Given an event-
based specification for a domain, the planner builds an initial world plan that reflects a
particular problem’s initial and goal states. This event network is then filled in through a
process of incremental constraint satisfaction.

The planning search space in GEMPLAN may be viewed as a tree with a partial plan at
each node. When a node is reached, the system checks to see whether a particular constraint
has been satisfied. If it has not, the search space branches for each of the possible plan “fixes”
that will satisfy that constraint. Since the kinds of constraints that must be satisfied are much
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broader than the pre- and postconditions used by other planners, the derivation of constraint
fixes is a nontrivial problem.

Highlights of the current system include a table-driven search mechanism that can be
adapted to specific domains, an efficient representation of world plans, facilities for plan
explanation, and nonatomic-event expansion. Initial work has also begun on delayed binding
of event parameters, on accumulating constraints on unbound variables, and on dependency-
directed search and backtracking.

Especially promising is current work on structuring and guiding the search in a way that
makes use of the domain structure itself. The planning space is partitioned to reflect the
element/group structure of the domain and search through this partitioned space is guided
by the aforementioned table-driven mechanism, which is tailorable to the domain. The result
is a planning architecture that can generate plans in a manner that can vary according to
the specific application, ranging from loosely coordinated, distributed forms of planning (for
less tightly synchronized applications) to more tightly coordinated, centralized planning (for
those applications in which synchronization constraints are strong and complex).

Another useful result is an algorithm that transforms an n-robot solution into an m-robot
solution where n > m. By using this algorithm, maximally parallel solutions are generated
and then made less parallel as resource constraints warrant. We expect this development to
be applicable to many other resource planning problems besides the blocks world and we shall
be reporting on it at a later date.

To satisfy violated constraints, we are currently using predefined fixes for common con-
straint forms. Because of the intractability of solving arbitrary first-order temporal-logic
constraints, we considered this to be a good initial approach to this problem. It is similar to
Chapman’s idea of cognitive cliches — i.e., utilizing a set of specialized theories that are com-
mon to many domains, rather than trying to solve for the most general theory [5]. A similar
idea is incorporated in the ISIS system [9]. However, we are also working on techniges for
deriving some fixes automatically from the logical form of a constraint, at least for a subset of
the logic. The synchronization techniques for solving propositional temporal-logic constraints
as conceived by Manna and Wolper [21] (and implemented by Stuart [31]) may eventually be
applied.
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APPENDIX: Restaurant Domain Specification

Restaurant Tables (of sizes 1 to 10)

RestaurantTable (size:INTEGER) = ELEMENT TYPE
EVENTS :
Occupy(p:Party)
Vacate(p:Party)
CONSTRAINTS
1) Tables can be occupied by only one party at a time.
( Occupy(p) — Vacate(p) )*—
END RestaurantTable

table[i=1..10] = RestaurantTable(i) ELEMENT
Vehicles

Vehicle = ELEMENT TYPE
EVENTS
Occupy
Drive(locl.loc2:Location)
Vacate
CONSTRAINTS
1) Vehicles can be occupied by only one passenger at a time.
( Occupy — Drive(locl,loc2) — Vacate )*—
END Vehicle

Taxi = Vehicle ELEMENT TYPE
taxi[1..5] = Taxi ELEMENT

Auto = Vehicle ELEMENT TYPE
auto[1..15] = Auto ELEMENT
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Restaurent Lobby end Reservations

lobby = ELEMENT
EVENTS

Enter(f:Friend)
END lobby

reservations = ELEMENT
EVENTS
Reserve(p:Party, b:Bribe)
Seat(p:Party. t:RestaurantTable)
CONSTRAINTS
1) To be seated, there must be a reservation. Moreover, each reservation is good
for only one seating.
Reserve(p.b) — Seat(p.t)

2) Parties can only be seated at tables of the right size.
occur(seat) D seat.p.size = seat.t.size

3) A bigger bribe will get you seated faster.
reservel cbefore Seat A reserve2 cbefore Seat A reservel.b > reserve2b o
O [(3 seat2:Seat) reserve2~s+seat2 D (3 seatl:Seat) reservel~sseat] ]

4) All other things being equal, seating is first-come-first-served.
reservel(pl,bl)=reserve2(p2.b2) A bl=b2 A
present(pl) A present{p2) >
D [(3 seat2:Seat) reserve2~sseat2 O (3 seatl:Seat) reservel~+seatl |

5) A $50 bribe will definitely get you seated.
reserve.b > $50 D> (3 seat:Seat) reserve~sseat
END reservations

where

present(p) = (V f:Friend. fep) (3 enter(f):Lobby.Enter)
enter(f) cbefore Reservations.Seat
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The Friends

Friend=GROUP TYPE (m:Movement.c:Communication.f:FoodOrdering.a:Auto)
CONSTRAINTS
1) Each friend must sit and order before they can eat.

m.Sit — c.OrderFood — c.Eat

2) If a friend is eating, they must still be sitting at a table.
justoccurred(c.eat) A m.sit~ac.orderfood~c.eat D
m.sit cbefore m.LeaveTable

3) To ride somewhere, a friend may use their own car.
m.Ride(locl.loc2) = a.Occupy — a.Drive(locl loc2) — a.Vacate

4) To order food, a friend must first read the menu, choose a meal, and then tell
the waiter.
¢.OrderFood = f f.s.Read{menu) —f.t.Choose(food) — f.s.Utter(food)

END Friend

Movement = ELEMENT TYPE
EVENTS
Ride(locl.loc2:Location)
Walk(locl.loc2:Location)
Sit(tableloc:Location)
LeaveTable(tableloc.Joc:Location)
CONSTRAINTS
1) A friend must walk to a table before sitting there, and must be sitting there
before leaving.
Walk(locl.tableloc) — Sit(tableloc) — LeaveTable(tableloc.loc2)

2) To depart from a location x, a friend must first be there.
(V move(x.y):{Ride, Walk,LeaveTable}) Precondition(move(x.y). at(x))

at(x) =
(INIT at(x) A — (3 move:{Ride.Walk.LeaveTable}) occurred(move)) v
((3 move(z.x):{Ride, Walk LeaveTable}) occurred(move(z.x)) A

— (3 move:{Ride,Walk LeaveTable}) move(z.x)=move’ )
END Movement
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Communication = ELEMENT TYPE
EVENTS
Reserve(p:Party, b:Bribe)
OrderFood(food:Foodstuff)
Eat
END Communication

FoodOrdering = GROUP TYPE (t:Thought, s:Speech, r:Sight. f:Order)
PORTS(f.OrderFood’, f.OrderFood”)

Thought = ELEMENT TYPE
EVENTS

Choose(food:Foodstuff)
END Thought

Speech = ELEMENT TYPE
EVENTS

Utter(food:Foodstuff)
END Speech

Sight = ELEMENT TYPE
EVENTS

Read(menu:ReadingMaterial)
END Sight

Order = ELEMENT TYPE
EVENTS

OrderFood’ (food:Foodstuff)
OrderFood” (food:FoodstufT)
END Order
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comm[1..15] = Communication ELEMENT

move[1..15] = Movement ELEMENT

thought[1..15] = Thought ELEMENT

speech[1..15] = Speech ELEMENT

sight[1..15] = Sight ELEMENT

order[1..15] = Order ELEMENT

foodorder[i=1..15] = FoodOrder GROUP (thought[i].speechl[i].sight]i].order]i])
auto[1..15] = Auto ELEMENT

friend[i=1..15] = Friend GROUP (comm([i].move]i].foodorder[i].autofi])

The Parties

Party(size:INTEGER) =

GROUP TYPE ({f}:SET OF Friend, reservations.lobby)
CONSTRAINTS
1) (size must be the size of the set of friends)

size = setsize({f})

2) A reservation by a friend is identified with a reservation at the desk.
f.c.Reserve(p.b) = reservations.Reserve(p.b)

3) All members of a party must be seated simultaneously.
(V f' € {f}) reservations.Seat(SELF.t) ~ f".m.Sit(t)

4) In order to be seated, all members of the party must be present.
(V f' e {f}) lobby.Enter(f’) —reservations.Seat(SELF, Table)

5) The first friend to enter the lobby must make a reservation.
(V f1.f2 € {f}) occurred(lobby.enter1{f1}) A
—(3 lobby.enter2(f2)) [lobby.enter2(f2)—>lobby.enter1(fl) ] ©
&> (3 reservel:fl.c.Reserve(SELF, b)) occurred(reservel)
END Party

party[1] = GROUP ({friend[1..3]}.reservations.lobby)
party[2] = GROUP ({friend[4..8]}.reservations.lobby)
party[3] = GROUP ({friend[9..15]} reservations,lobby)
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Feliz

observations = ELEMENT
EVENTS

EmptyTable(t)
END observations

felixworld = GROUP (reservations, table[1..10]. lobby. observations)
PORTS(table[i].Vacate)
CONSTRAINTS
1) Felix must observe that a table is empty before he can seat a party there.
observations.EmptyTable(table[i]} — reservations.Seat{Party,table[i])

2) Seating a party at a table is the same as occupying the table.
reservations.Seat(p.table[i]) & table[i].Occupy(p)

3) Felix must make correct observations about empty tables.
(V empty(t):observations. EmptyTable) Precondition(empty(t), TableEmpty(t}))

TableEmpty(table[i]) =
= (3 occupy:table[i].Occupy) occurred(occupy) v
(3 vacate:tablefi]. Vacate) vacate cbefore table[i].Occupy

END felixworld

The Entire Restaurant Scenario

restaurantscenario = GROUP(felixworld, party[1..3]. taxi[1..5])
CONSTRAINTS
1) (¥ taxi[i].party]i])

party[j].f.m.Ride(loc1.l0c2) =

taxi[i].Occupy — taxi[i].Drive(loci.loc2) — taxi[i]. Vacate
END restaurantscenario
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